

2ND ． 2017

AUGUST 15, 2017 (TUESDAY)

LA SALLE COLLEGE

SOLUTIONS

ID NAME AUTHOR DIFFICULTY

A Ambiguous Dates Tung Kam Chuen ★★★☆☆

B Bacteria Experiment Wong Tsz Chun ★★★★☆

C Cheering Tung Kam Chuen ★☆☆☆☆

D Distribution of Days Wong Tsz Chun ★★★☆☆

E Expected Score Poon Lik Hang ★★★☆☆

F Frustrating Game Chow Kwan Ting Jeremy ★★★★☆

G Gravitational Tetris Wong Man Hang ★★★★★

H Hit! Wong Yik Chun ★★☆☆☆

I Inverted Signs Wong Yik Chun ★★☆☆☆

J Juicy Candies Tung Kam Chuen ★★★★★

K Knights Wong Tsz Chun ★☆☆☆☆

L Let Me Count The Ways Tung Kam Chuen ★★★★★

The authors expect that the problems were to be solved by

the following percentage of teams

From 1 to 5 stars: >75%, 50-75%, 25-50%, 5-25%, < 5%

A - Ambiguous Dates

Solution

This problem may look intimidating at first, but with the following key obser-
vation, it becomes quite easy:

One optimal way of rearrangement is to sort D[] in ascending
order.

The rough idea is that for larger D[i], putting it nearer to the end of the year
can help reduce the number of ambiguous dates (as, perhaps indirectly, hinted
in sample 2).

To calculate the answer, it suffices to count the number of ambiguous dates
(D0,M0, Y0) with D0 > M0, and the answer will be equal to two times the count.

Suppose this fact is true (we will outline the proof later). Notice that we
only need to count the number of indices i, j, such that 1 ≤ i < j ≤ M ,
D[i] ≥ j, and D[j] ≥ i. As D[] is increasing, D[i] ≥ j implies D[j] ≥ i (since
D[j] ≥ D[i] ≥ j ≥ i).

For a given j, let α(j) be the largest index such that D[α(j)] < j. (Set
α(j) = 0 if D[1] ≥ j.) Then, we add j − α(j) − 1 to the answer if (and only if)
α(j) < j.

Because of the monotonicity of D[], finding α(j) can be done by either binary
search or the method of two pointers. Thus, the time complexity is O(N log N),
assuming sorting is done in O(N log N) time.

(Outline of) Proof of the observation

To prove the key observation which is central to our solution, it suffices to show
that, if D[i] > D[i + 1] for some i, then swapping D[i] and D[i + 1] does not
make the answer worse.

Showing that this fact is true amounts to doing simple calculations in dif-
ferent cases, for example:

• D[i] ≤ i

• D[i+ 1] > i

• D[i] > i and D[i+ 1] ≤ i

Challenge

Do you know how to solve the problem if rearrangement of D[] is not allowed?

1

B - Bacteria Expermient

Solution

As there are many edges to be formed, we cannot just simulate the evolution
of the graph, but try to observe some patterns.

We may start from simplier form of initial graph like chain. In this case, we
can observe that nodes with distance of 2 can be connected by an edge at t =
1, distance of 3 or 4 can be connected at t = 2, and so on. As at time T , nodes
with distance at most 2T can be connected. Therefore, for the two ends of a
chain with distance D, the total time required should be dlog2De

With this observation, we can try to find the longest chain in the initial
graph(a.k.a. diameter of the graph) and use the formula above. It can be easily
proved that the edge connecting two ends of diameter must be one of latest edge
formed. Otherwise, there must be a longer chain contained in the graph.

So, we can just find the length of diameter(D), and the answer should be
dlog2De

Implementation

There are two simple way to find the diameter of a graph in O(|V |):

The first way is implementing a tree DP. We can perform a DFS on the
graph from an arbitrary node. For each node, we have to calculate the two
longest distance to the leaves, and use their sum to update the diameter. The
longest distance can be maintained by using the information from the children
and add one to them.

The second way is two perform DFS twice. We can start at an arbitrary
node(let’s call it node u), and find one of the farthest node from node u, let’s call
it node v. And then, we should start a DFS again to find the farthest node from
node v, node w. The diameter of the tree is the distance between node v and
node w. Proof of correctness for this algorithm can be easily searched on Google

You may replace the DFSs with BFSs as well.

Comments

The author intends to prepare an easier graph problem than those requiring
advanced techniques(e.g. Dijkstra, SPFA, LCA) so teams which can observe
the pattern are able to solve the task.

Disappointingly, some teams know how to find the diameter of a tree, but
getting wrong formulas: d0.5De or D−1. It seems many teams tried to observe
some patterns, but did not verify their guess with larger cases or think of a
reasonable proof.

1

C - Cheering

This is intended to be the easiest problem of the whole contest. Nothing tricky,
just input the string, calculate A and B as required, and output accordingly.
The psuedo-code may look like:

input S

set A = 0, B = 0

for i from 0 to length(S) - 1

if S[i...i+2] = “LSC”
A ← A + 1

if S[i...i+3] = “PCMS”
B ← B + 1

end

if A > B

print “LSC”
if A < B

print “PCMS”
if A = B

print “Tie”

1

D - Distribution of Days

Solution

The given constriants on years (S and E) are so large and with many queries
(at most 5000 queries) as well, so we cannot just simply answer each query by
iterating through every year between S and E as it costs so much time. There-
fore, we have to figure out a faster way of answering queries.

Key observation is that as the pattern of leap years forms a cycle with length
400, and the pattern of days of the week is a cycle with length 7. The distri-
bution of days must form a cycle every 7 × 400 = 2800 years. In other words,
distribution of days in the year 2000 must be same as that in the year 4800.

With this observation, we can pre-compute the distribution of days in every
2800 years. Then for each query, we can first find number of cycles within the
years S and E, which is E−S+1

2800 , multiply it with the pre-computed value. The
only thing left is the remaining years after last cycle. We can obtain these values
easily by just iterating all the remaining years, with at most 2799 years in worst
case. Thefore the time complexity of this method is roughly O(Q× L + 366L)
where L is the cycle length (2800 in this case). This solution is fast enough to
pass all tests during the contest.

Further Optimization

Actually, the number of days within 400 consecutive years is 97×366+303×
365 = 146097. As 146097 is a multiple of seven(7 × 20871), the length of cycle
L can be reduced to 400 instead of 2800.

Actually if we only consider years kL to (K + 1)L− 1, where k is arbitrary
integers, as cycles, we will have to handle the years before the first cycle within
range, and also the years after the last cycle within range. These two parts
each has at most L − 1 possibilties only. Therefore, we can pre-compute the
values of these two parts as well. Then the time complexity can be reduced to
O(Q + 366L)

Comments

As what the author heard from the contestants, some teams are able to no-
tice that the solution should consider cycles in order to reduce time complexity.
Unfortunately, only one team can manage to code the solution without bugs.
Obviously, this task is mainly testing contestants’ coding skills. For instance,
contestants must carefully handle cases with 29 February.

To be honest, the author expected more teams were able to solve this task.

1

E – Expected Score

Firstly, we can divide the 2N chests into two types.

1. “Opened chest” (i.e. number in the chest is known)

2. “Unopened chest” (i.e. number in the chest is not known).

Let’s denote the 2 chests marked as the same number as a “Chest group”.

Note that the player has three strategies in the last round.

1. Open two “Opened chests”

2. Open one “Opened chest” and one “unopened chest”

3. Open two “Unopened chests”

Then, we can calculate the expected score of the whole game for each strategy

separately.

Sample Case

For better understanding, we use an example to demonstrate the calculation

process.

Consider the following game state:

3 ? 4 4 ? ? 5 ? 2 2 ? ? ? ?

We have 14 chests totally, “unopened chest” is denoted as an ?.

The score we get in the previous round is 2.

We can first classify each chest group as “Both opened”, “One opened” and “Both

unopened”.

Chest groups with score = 2 and 4 belong to “Both opened”

Chest groups with score = 3 and 5 belong to “One opened”

Chest groups with score = 1, 6 and 7 belong to “Both unopened”

We also denotes M as the number of unopened chest. In this case, M = 8

Case 1:

We have 100% chance to get score 𝑥 in the last round if chest group with score

𝑥 belongs to “Both opened”.

We have 0% chance to get score 𝑥 if chest group with score 𝑥 does not belong

to “Both opened”.

It is obvious that we will choose the largest 𝑥 belongs to “Both opened”. In the

sample above, it is 4.

Then our final expected score = max(4, 2) = 4

Case 2:

We have
1

M
 chance to get score 𝑥 in the last round only if and only if chest group

with score 𝑥 belongs to “One opened”.

We have 0% chance to get score 𝑥 if chest group with score 𝑥 does not belong

to “One opened”.

It is also obviously that we will choose the largest 𝑥 belongs to “One opened”. In

the sample, it is 5 and M = 8.

Then our final expected score =
1

8
× 𝑚𝑎𝑥(5, 2) +

7

8
× 2 = 2.125

Case 3:

We have
2

M
×

1

𝑀−1
 chance to get score 𝑥 if and only if chest group with score 𝑥

belongs to “Both unopened”.

We have 0% chance to get score 𝑥 if chest group with score 𝑥 does not belong

to “Both unopened”.

Note that if 𝑥 is smaller than the score we got in the previous round, getting

score 𝑥 in the last round will not increase our expected final score. So, we only

consider the “Both unopened” chest groups which score greater than 𝑥. They are

6 and 7 in this case.

Therefore, the final expected score =
2

8
×

1

7
× 6 +

2

8
×

1

7
× 7 + 𝑜𝑡ℎ𝑒𝑟 × 2

Where 𝑜𝑡ℎ𝑒𝑟 = 1 − (
2

8
×

1

7
 +

2

8
×

1

7
) , 𝑎𝑛𝑠 = 2.321

The answer of the whole problem is maximum of the answer in the three cases

above.

General Solution

Case 1:

for (all x which is both opened)

 Answer = max(Answer, x);

Answer = max(Answer, previous_round_score)

Case 2:

for (all x which is one opened)

 Answer = max(Answer, x);

Answer = max(Answer, previous_round_score);

Answer = 1 / m * Answer + (1 – 1 / m) * previous_round_score;

Case 3:

for (all x which is both unopened)

 if (x > previous_round_score)

 Answer += (2 / m) * (1 / (m - 1)) * x;

 other += (2 / m) * (1 / (m - 1));

Answer = Answer + (1 – other) * previous_round_score

Comment

All of the problem setters agree that this is not a difficult task and rank it as

medium difficulty comparing with other problems in this contest.

Unexpectedly only 2 + 1 teams solve this task.

Although the problem statement are complicated, it is suggested to read all

problems in an ACM contest.

When encounters case handling problem, it is a good strategy to list out all cases

on a paper before coding.

F – Frustrating Game

Solution:

Firstly, we should determine whether it is possible to achieve the goal. Let the

number of red balls be R and the number of blue balls be B. If one of them is

satisfied, then it is impossible to turn all balls into white.

1. R is not divisible by X

2. B is not divisible by Y

3.
𝑹

𝑿
 is not equal to

𝑩

𝒀

Because if one of them is satisfied, you will not be able to select X red balls and Y

balls at some time, while not all balls are in white. Other than those cases, it is

always possible to achieve the goal. The proof will be discussed later.

Let’s think about an easier problem, where X and Y is always equal to 1. Because (3)

not satisfied, so R = B. Let look at the Sample 1.

Because of the restrictions of the spell, there cannot be two spells {a, b}, {c, d},

where 𝒂 < 𝒄, such that 𝒃 > 𝒄 𝒂𝒏𝒅 𝒃 < 𝒅 as not matter how we arrange the

spells, it is always invalid.

So, we only can have spells {a, b}, {c, d} such that b < c or b > d.

Now it looks like the problem which is about assigning a valid parentheses sequence,

which one end is red ball and one end is blue ball.

We can assign such valid parentheses sequence to Sample 1.

(()())

To get the correct order of spells, we just need to output the index of parentheses

from outside to inside, which is {1, 6}, {2, 3}, {4, 5}. We can simulate this easily by

stack. When there are 1 red ball and 1 blue ball on the top of the stack, we pop them

out to use a spell. After processing all balls, we reverse the order of the spells. Then

we can get a valid spell sequence.

Back to the original problem, we can extend the idea of X = 1 and Y = 1. The problem

is again similar to assigning a valid parentheses sequence, but this time the

parentheses have X + Y parts instead of 2 parts and there must be X red parts and Y

blue parts. We maintain a stack, where each element of the stack records how many

red and blue balls are in the previous X + Y balls of it in the stack. When there are X

red balls and Y blue balls on the top of the stack, we pop them out to use a spell.

Finally, we reverse the order of the spells.

Notice that we may need window sliding technique to maintain the information of

the element of the stack, so we will not only access the top of the stack. Therefore

hand-written stack is preferred as STL stack can only access the top element of the

stack.

So why when (1), (2), (3) are not satisfied, it is always possible? At this point, R = kX

and B = kY, where k is a positive integer. In a sequence that consists of kX red balls

and kY blue balls, we can always find an interval that contain X red balls and Y blue

balls. After popping them out, our sequence consists of (k – 1)X and (k – 1)Y, we can

find an interval that contain X red balls and Y blue balls again. The process is end

when k = 0. So, by induction, it is always possible to turn all balls into white.

G – Gravitational Tetris

When the problem states that the input is guaranteed to be a valid game state, what does it mean?

Every piece consists of 4 blocks, and there are 10 columns. Therefore, we can conclude that the

number of remaining blocks in the game must be even.

Specifically, if even number of lines have been eliminated, the number of remaining blocks will

be a multiple of 4. If odd number of lines have been eliminated, the remainder of number of

remaining blocks divided by 4 will be 2. To win the game, an even number of lines are to be

eliminated.

Once we understand the condition of the valid game states, we need to come up with a construction

that can cover all cases, is easy to implement, and satisfy the constraints (time, memory and output

limit). Below describes one such solution.

Let’s say we aim for eliminating 40* lines. This is equivalent to making all

10 elements in the array to become 40. We do so by going through columns

1 to 9 one by one. Use a combination of As and (at most 3) Gs so that the

column becomes 40. i.e. solve for 𝑎[𝑖] + 4𝑥 + 3𝑦 = 40. Note that for

every G you add, you need to add one block to the next column 𝑎[𝑖 + 1].

For column 10, there are two possibilities: 𝑎[10] mod 4 = 0 or 2. For 𝑎[10] mod 4 = 0, it’s easy

because you can just add As to make 𝑎[10] = 40. For 𝑎[10] mod 4 = 2, you can make 𝑎[10] =
38, then use two Bs and an E to finish the game.

Some contestants may approach this problem as a graph search problem. However, the large

number of states requires heavy optimization and is unlikely to fit inside the time limit.

* 40 is not the minimum, but we usually pick a number that would certainly work by intuition.

41

40

39

38

12

11

10

9

8

7

6

5

4

3

2

1

Add As until 40

H – Hit!

Let’s consider the hardest case: the two circles are just touching.

Can you find (𝑥, 𝑦)?

Using the ratio formula, we can obtain (𝑥, 𝑦) = (
𝑥1𝑟2+𝑥2𝑟1

𝑟1+𝑟2
,

𝑦1𝑟2+𝑦2𝑟1

𝑟1+𝑟2
)

Can this formula solve all the cases, such as the one below? This is left as an exercise for you.

However, during contest time, it is not a bad strategy to simply give it a try.

Time complexity would be O(1).

I – Inverted Signs

Assume we flip a subarray from H[l] to H[r], one can notice that the changes between l and r, do

not contribute any difference to the new chaos index. For example, when we change 7 and -4 to -7

and 4, their absolute difference is still 11.

Therefore, only two pairs (H[l-1], H[l]) and (H[r], H[r+1]) would contribute to the update.

Denote old chaos index as C, we know that the new chaos index would be

C – abs(H[l-1]– H[l])

 + abs(H[l-1]– (–H[l]))

 – abs(H[r]– H[r+1]))

 + abs(–(H[r]) – H[r+1]))

So we can do a linear scan in the array, with i=1,2,…,N, maintaining l that

– abs(H[l-1]– H[l]) + abs(H[l-1]– (–H[l])) is least. The answer would be the minimum of

C – abs(H[l-1]– H[l])

 + abs(H[l-1]– (–H[l]))

 – abs(H[i]– H[i+1]))

 + abs(–(H[i]) – H[i+1]))

i=1,2,…,N and l<=i

Time complexity would be O(N).

J - Juicy Candies

This is a standard, yet quite difficult, problem on dynamic programming (DP).

The main idea is that, if we know how to calculate (quickly) the number
of strings with a given prefix, we would be done. So, the following discussion
is divided into two parts: how to calculate the number of strings with a given
prefix, and how to use the calculation to solve the problem.

Number of strings with a given prefix

Note that we are only concerned with two things:

• The number of occurrences of B, R, and S in the prefix

• The last character (if any) of the prefix

So we do a simple dynamic programming on suffixes. For a nonempty
suffix, we need to know:

• The number of occurrences of B, R, and S in the suffix

• The fisrt character of the suffix

So we define, for a given state (b, r, s, f), dp[b][r][s][f] to be the number of
suffixes with b Bs, r rs, and s Ss, with first character indicated by f (for exam-
ple, f = 0 for B, f = 1 for R, f = 2 for S).

Our base case would be dp[1][0][0][0] = dp[0][1][0][1] = dp[0][0][1][2] = 1. For
transition from (b, r, s, f) to (b′, r′, s′, f ′), we append a character to the front of
the original suffix.

If we append B, make sure f 6= 0 and b < B. The new state is (b′, r′, s′, f ′) =
(b+ 1, r, s, 0), so we add dp[b][r][s][f] to dp[b+ 1][f][s][0]. Similar rules apply for
appending R and S.

The number of states is O(BRS) and transition is done in O(1), so the time
complexity for this step is O(BRS).

Beware that the numbers can be very large, so you should upper-bound them
by a large enough number (for example, 1018, or just K), to avoid overflow.

Finding the answer

If dp[B][R][S][0] + dp[B][R][S][1] + dp[B][R][S][2] < K, output None. From now
on, assume that the sought string does exist.

We try to find out the characters from left to right. For a given prefix with
b Bs, r Rs, and s Ss, and the last character being c ∈ {B,R,S}, we try to append
a character to it. Which character to append? We follow the procedure below:

1

1. If b < B and c 6= B, append B to the prefix if dp[B−b][R−r][S−s][0] ≥ K
and go to step 4. Otherwise, subtract dp[B − b][R− r][S − s][0] from K.

2. If r < R and c 6= R, append R to the prefix if dp[B−b][R−r][S−s][1] ≥ K
and go to step 4. Otherwise, subtract dp[B − b][R− r][S − s][1] from K.

3. Append S to the prefix.

4. Update the values of b, r, s, and c.

Repeat the steps for (B +R+S) times, and we will have the desired string.
For this part, the time complexity is O(B + R + S).

Combining, the time complexity for the problem is O(BRS).

2

K - Knights

Solution

The problem has long explanation on the rules of the game. However, it
should be not hard to notice that only the four corners are important.

The solution to this problem is to just check the number of unoccupied cor-
ners. We should place knights only on these places.

As the corners cannot be occupied by ways other than directly sending
knights there, corners are neccesary for you to send knights directly. On the
other hand, if four corners are occupied, every other cell will be occupied as
well. Therefore, it is obvious that the solution both optimal and correct.

Implementation

The idea is easy, so the only thing left is to implement it. Actually there
are many ways: after reading each pair of coordinates, use four if-statements
to check if it is any of the corners. Or, marking those places as TRUE in a 2-D
boolean array.

The only thing requries our attention should be when any of N and M equal
one, the number of corners is reduced to 2 or 1. Some solutions without special
handling will double-count these corners.

Comments

It is happy to see that nearly all teams were able to notice the key obser-
vation and implemented their idea carefully, successfully obtained a red balloon.

However, many teams attempted many times before getting an Accepted,
this is mainly because teams did not check their programs carefully with some
boundary cases mentioned above. The sample case with N = M = 1 should
remind you taking care of the special cases.

1

L - Let Me Count The Ways

There are two parts to this problem, and both parts are challenging. That
no (official) teams were able to solve this problem during the contest was as
expected.

For problems with such a simple combinatorial setting, one would expect
that the answer would be given by an equally simple formula. Finding such a
formula is the first part.

It turns out that, given such a formula, computing the answer efficiently
would still be tricky. Computing the answer efficiently is the second part.

Finding the formula

How to count the ways? Here are some ideas which may help.

Idea 1: Relaxing the conditions

For succinctness, we introduce the following definitions:

• Call an arrangement row-regular, if numbers on both of the rows are sorted
in descending order.

• Call an arrangement column-regular, if numbers on all the columns are
sorted in descending order.

Then, the answer is given by the number of arrangements that are both
row-regular and column-regular.

The number of row-regular arrangements is
(
N+M

N

)
, because each arrange-

ment corresponds to a way to choose N numbers from 1, 2, . . . , N+M−1, N+M
for the first row.

Therefore, the answer is
(
N+M

N

)
, minus the number of row-regular arrange-

ments that are not column-regular.

Idea 2: Special case N = M

When N = M , the answer is given by the well-known Catalan numbers (if you
don’t know what it is, just google it). Its formula is given by 1

N+1 ×
(
2N
N

)
.

We can rewrite it as
(
N+N
N

)
−

(
N+N
N+1

)
. Maybe the answer is similar-looking

in the general case...?

Idea 3a: Testing with the sample cases

Let answer be
(
N+M

N

)
−R(N,M). Let us try the ideas on the first four sample

cases:

1

• Sample 1: N = 5,M = 3.
Answer = 28 =

(
5+3
5

)
−R(5, 3) = 56 −R(5, 3).

So R(5, 3) = 28.

• Sample 2: N = 2,M = 1.
Answer = 2 =

(
2+1
2

)
−R(2, 1) = 3 −R(2, 1).

So R(2, 1) = 1.

• Sample 3: N = 4,M = 4.
Answer = 14 =

(
4+4
4

)
−R(4, 4) = 70 −R(4, 4).

So R(4, 4) = 56.

• Sample 4: N = 10,M = 6.
Answer = 3640 =

(
10+6
10

)
−R(10, 6) = 8008 −R(10, 6).

So R(10, 6) = 4368.

Note the interesting relation between
(
N+M

N

)
and R(N,M). In fact, one may

observe that R(N,M) =
(
N+M

N

)
× M

N+1 =
(
N+M
N+1

)
. Note that this fits with our

knowledge of the Catalan numbers (i.e. when N = M).

This is of course correct, and so we finally have the answer:
(
N+M

N

)
−
(
N+M
N+1

)
.

For a proof of the formula, see the section below.

Idea 3b: Direct combinatorial proof

It will be more convenient to consider another combinatorial object: paths on
the Cartesian coordinate plane.

For each row-regular arrangement, we assign to it a path from (0, 0) to
(N + M,N − M). Our starting point is (0, 0) and we move in the following
manner:

for i from (N + M) downto 1

if i is found in the first row

move from (X, Y) to (X + 1, Y + 1)

else

move from (X, Y) to (X + 1, Y - 1)

For example, the table below

would correspond to this path:

2

Our answer would be the number of such paths from (0, 0) to (N+M,N−M),
which does not cross the x-axis (‘good’ paths).

The total number of paths is
(
N+M

N

)
, as we know. We shall show that the

number of paths which crosses the x-axis (‘bad’ paths) equals
(
N+M
N+1

)
.

For each ‘bad’ path, it contains a point of the form (x,−1). Find the left-
most such point, and reflect the portion of the path to the left of the point,
along the line y = −1. For example, the path above would become:

In fact, this construction provides a bijection between:

• the number of ‘bad’ paths from (0, 0) to (N + M,N −M), and

• the number of paths from (0,−2) to (N + M,N −M).

Hence, the number of ‘bad’ paths equals
(
N+M
N+1

)
, and we are done.

3

Computing the answer efficiently

Finally, we need to compute
(
N+M

N

)
−
(
N+M
N+1

)
modulo P = 1000000007 efficiently.

Let us first consider the following solution, which works for N ≤ 107, but
not for N ≤ 109.

• Precompute fact[k] := k! (k factorial)

• Calculate
(
n
r

)
using the formula

(
n
r

)
= n!

r! (n−r)!

• Get answer!

Now we address several difficulties and improve the solution above.

Difficulty 1. How to divide a number (modulo P)? In other words, how
to find the inverse of a number (modulo P)? Well, since P is a prime, Fermat’s
little theorem tells us that ab ≡ 1 (mod P) is equivalent to a ≡ bP−2 (mod P).
Finding bP−2 (mod P) can be done in O(log P) time, using fast exponentiation.

Thus, to divide by r!, we only need to know fact[r].

Difficulty 2. It seems that precomputing the factorial table is unavoidable.
What must be done to fit the solution into the time limit? Well, we can pre-
compute the factorial table on our machine, and store a portion of the values
in our new program. For example, we can store 1000 numbers: the values of
1000000!, 2000000!, ..., 999000000!, 1000000000!, all modulo P .

Then, it takes at most 1000000 iterations to compute any value of fact[k]
(if k is too large, fact[k] is just zero), and the solution fits into the time limit.

4

	solncover
	A
	B
	C
	D
	E
	F(1)
	G
	J
	K
	L
	tutorial(1)

