

ppcx64-3.0.0 -O2 -Sg -v0 -dEVAL –XS

gcc-5.3.1 -static -Wno-unused-result -DEVAL -lm -s -O2

g++-5.3.1 -static -std=c++11 -Wno-unused-result -DEVAL -lm -s -O2

 int64 long long

%lld

Ambidexterity
Time Limit: 1 second
Memory Limit: 256 MB
Input: standard input
Output: standard output

In this task, you are going to determine whether Nai is ambidextrous, i.e. whether he can write equally
well with both hands.

You have learned that Nai writes at speed L characters per minute with his left hand and at speed R
characters per minute with his right hand. If L = R, then obviously Nai writes equally well with both
hands; but we allow some leniency.

Given a parameter P , where 50 ≤ P ≤ 100, Nai is considered ambidextrous if the writing speed of his
weaker (slower) hand is at least P% that of his dominant (faster) hand, or if L = R, in which case it is
hard to tell which hand is dominant. Otherwise, he is either left- or right-handed.

This simple task should not take you more than a few minutes, right?

Input

The first and only line of input consists of three space-separated integers L,R, and P .

For all test cases, 50 ≤ P ≤ 100, 1 ≤ L,R ≤ 100.

Output

If Nai is ambidextrous, output Ambidextrous .

Otherwise, if Nai's dominant hand is his left hand, output Left-handed . Otherwise, output Right-
handed .

Examples

input

18 37 50

input

19 37 50

input

100 99 100

A

output

Right-handed

output

Ambidextrous

output

Left-handed

This page is intentionally left blank.

Bob the Builder
Time Limit: 2 seconds
Memory Limit: 256 MB
Input: standard input
Output: standard output

Bob the builder wants to build the most exciting roller coaster in the world!

Due to the limited space, Bob can only build the railroad without turning left or right. Also, Bob thinks
the only interesting part of roller coaster is going down, so he will not consider any parts of the
railroad going upward as well.

Under the above conditions, you may consider the railroad as a polyline (broken line) on a 2D
Cartesian coordinate plane. Formally, Bob has to build the railroad from x = 0 to x = N . For each
integer x = i (0 ≤ i ≤ N), Bob can choose the height Hi of the railroad as any non-negative integer. In
other words, the railroad is a polyline formed by the points (0, H0), (1, H1), … , (N , HN) (in this order),
with the constraints that:

For safety reasons, the railroad should not be too steep, so for integers i (0 ≤ i < N), Hi+1 = Hi

or Hi+1 = Hi − 1.
To let the passengers leave on the ground, HN = 0.

An example with N = 9 and H0..9 = {4, 4, 3, 3, 3, 2, 2, 1, 1, 0}

To build an exciting roller coaster, Bob defines the exciting index as the number of times the
passengers seeing new furthest part of the railroad. Formally:

The passengers ride in positive x direction (i.e. from x = 0 to x = N), along the railroad.
For integers i (0 ≤ i ≤ N), when passengers are at the point (i, Hi), the furthest part of railroad
they can see is defined the largest integer fi (i ≤ fi ≤ N) such that there DO NOT EXIST any
integers j (i < j < fi) that the point (j, Hj) is strictly above the line segment formed by (i, Hi)

and (fi, Hfi).

B

In this example, passengers at the point (1, H1) cannot see the point (6, H6) as there exists
point (4, H4) lying strictly above the line segment formed by (1, H1) and (6, H6). However, they
can see the point (4, H4) as there are no points lying strictly above the line segment formed by

(1, H1) and (4, H4).

For integers i (0 ≤ i ≤ N), if the value of fi is strictly greater than fk for all integers k (0 ≤ k < i

), then point (i, Hi) is considered as an exciting point. In particular, (0, H0) is an exciting point.
The exciting index of the railroad is the number of exciting points.

An example with f0..9 = {1, 4, 4, 4, 8, 6, 8, 8, 9, 9} and exciting index = 4

(Note that f4 = 8 as (6, 2) is just lying on the line segment formed by (4, 3) and (8, 1), but NOT "strictly
above")

Given the value of N , please write a program to help Bob finding any valid design maximizing the
exciting index.

Input

The only line contains a single integer N (1 ≤ N ≤ 106).

Output

On the first line, output the maximum exciting index.

On the next line, output H0, H1, … HN , representing the design of the railroad.

Example

input

9

output

4
4 4 3 3 3 2 2 1 1 0

Consecutive Numbers
Time Limit: 1 second
Memory Limit: 256 MB
Input: standard input
Output: standard output

"Captain Teemo on duty!"

"Hut two three four" Perhaps Teemo loves consecutive numbers as many people do.

Tristana, as a lover of consecutive numbers (and also Teemo), asked you Q questions. For each
question, you have to determine whether the given number X can be represented as a sum of at least
two consecutive positive integers. For example, the answer for X = 9 is Yes as 9 = 2 + 3 + 4 while the
answer for 2 is No (note that (−1) + 0 + 1 + 2 = 2 is invalid as only positive integers are allowed).

Input

The first line contains a single integer, Q, denoting the number of questions Timo asked (1 ≤ Q ≤ 105).

In each of the next Q lines, a positive integer X is given (1 ≤ X ≤ 109).

Output

For each of the Q questions, print the answer in a single line: either Yes or No .

Example

input

6
1
2
10
20
100
200

C

output

No
No
Yes
Yes
Yes
Yes

This page is intentionally left blank.

Di�erentiation
Time Limit: 1 second
Memory Limit: 256 MB
Input: standard input
Output: standard output

Write a program to differentiate a polynomial in x.

Here's how to differentiate a polynomial in the form

cnx
n + cn−1x

n−1 + ⋯ + c1x + c0

Each term cix
i where i ≥ 1 can be handled individually:

1. Multiply the coefficient ci by i.
2. Decrease the exponent of x by 1.
3. Therefore, the result of the term is (ci × i)x

i−1

Finally, join the results of the terms together to form the final polynomial. Also, the derivative of the
constant term is 0.

For example, the derivative of −3x
3 + 5x

2 − 7x + 4 is (−3 × 3)x
3−1 + (5 × 2)x

2−1 + (7 × 1)x
1−1 + 0 =

−9x
2 + 10x − 7

The polynomial's format is similar to the requirements for math homework:

The polynomial does not start with a plus sign.
The polynomial contains no spaces.
The terms should be ordered in strictly decreasing degree of x.
There should be no redundant terms. The term is omitted if the coefficient is 0.
The 1 is omitted if the coefficient is 1 or -1. (see sample 1)
The degree is written directly after x . The exponent is omitted if the degree is 1.
The constant term is omitted if it is zero, except that when the whole polynomial is zero (see
sample 3).

Therefore, there is only one way to format a polynomial correctly.

Input

The input consists of a string: the polynomial. The maximum degree of x is 99 and the coefficients are
integers between -99 and 99, including -99 and 99 but excluding 0. The length of the string is at most
100.

It's guaranteed that the string strictly follows the format, i.e. +0x1-1x2+0 is not a possible input.

Output

Output the derivative of the polynomial. It must strictly follow the format.

D

Examples

input

4x5-x2

input

-6x+3

input

5

input

-3x3+5x2-7x+4

output

20x4-2x

output

-6

output

0

output

-9x2+10x-7

Error
Time Limit: 1 second
Memory Limit: 256 MB
Input: standard input
Output: standard output

Percy is a primary school student. He is learning how to do addition and subtraction. Being a smart
boy, he decided to use a calculator instead of doing it by hand.

The calculator can only store and display non-negative integers of up to 8 digits, i.e. integers between
0 and 99999999 inclusive. If at any time the result of an operation exceeds this range, the calculator
will display Error and stops functioning. Therefore, Percy tries to rearrange the terms in the
expression he is trying to calculate.

Specifically, the expression contains N numbers between -99999999 and 99999999 and Percy needs
to sum them up using the calculator one by one. Since numbers can be summed up in any order, help
Percy find an order that won't cause any error.

Input

The first line contains an integer N , the number of integers that Percy needs to sum up (1 ≤ N ≤ 10).

Each of the next N lines contains an integer between -99999999 and 99999999 inclusive.

Output

If it is not possible to calculate the sum of the integers without causing calculator error, output Error .

Otherwise, in separate lines output ANY order of the N integers that would not cause calculator error.
The integers shall be added to / subtracted from the calculator one by one from top to bottom.

Examples

input

4
33334444
87654321
-10000000
-20000000

input

3
-100
-200
-300

input

3
-400
10000
-7000

E

output

33334444
-10000000
-20000000
87654321

output

Error

output

10000
-7000
-400

Note

In sample 1, one of the possible order is +33334444 → -10000000 → -20000000 → +87654321. The
results after the operations are 33334444, 23334444, 3334444 and 90988765. All of them are between
0 and 99999999 inclusive. Note that +87654321 → -20000000 → -10000000 → +33334444 is also
acceptable. However, +87654321 → -20000000 → +33334444 → -10000000 is not an acceptable
answer because the result after +33334444 is 100988765 which exceeds 99999999.

In sample 2, it will cause Error no matter how Percy reorders the operations.

Final Fixture
Time Limit: 2 seconds
Memory Limit: 256 MB
Input: standard input
Output: standard output

Like in many countries, there is a football league in Hackerland. The top league (called Tourist League)
has N teams, where N is an even number. The teams are conveniently numbered from 1 to N .

For those unfamiliar with football leagues, here is the basic information that you need to know for this
task. Three statistics determine a team's standing: points, goals scored, and goals conceded. For every
match a team plays, they score goals and concede goals.

If they score more goals than they concede, then they win and earn three points.
If they score the same number of goals as they concede, then they draw and earn one point.
If they score fewer goals then they concede, then they lose and earn no points.

For two teams A and B, let PA be the total points team A has, SA be the total number of goals scored
by team A, and CA be the total number of goals conceded by team A. Likewise for PB, SB, and CB.
Team A is ranked higher than team B if and only if one of the following is true:

PA > PB (more points)
PA = PB and SA − CA > SB − CB (same points, superior goal difference)
PA = PB, SA − CA = SB − CB, and SA > SB (same points, same goal difference, more goals
scored)

There is no further tiebreaker. Therefore, it is possible for two teams to have the same rank. A team's
rank is given by 1+ (number of teams ranked higher than it).

The final fixture in the league is always the most exciting one, especially at the top and at the bottom
of the table, where teams fight fiercely for their respective targets. More important, all matches will
start at the same time, and a team's fate may depend on scorelines of matches played hundreds of
miles away!

For all N teams in the Tourist League, you know their points, goals scored, and goals conceded, right
before the final fixture. You also know the pairing for the final fixture.

Here is your task: based on your data, determine each team's best and worst final rank. For the sake of
this task, there is no upper limit on the number of goals a team can score within a match; even a
109 − 0 scoreline is considered possible.

The given data (points, goals scored, goals conceded) may be inconsistent, since they come from
a questionable source. Nevertheless, you are to make predictions based on the data.

The pairing is guaranteed to be consistent, i.e. each team will play against exactly one other team.

Input

The first line of input consists of an even integer N (2 ≤ N ≤ 5000).

N

2
 lines follow. The i-th line consists of two space-separated integers Ai and Bi, meaning that team Ai

will play against team Bi in the final fixture. Each of 1, 2, … , N appears exactly once in
{A1, … , A N

2
, B1, … , B N

2
}.

F

N lines follow. The i-th line consists of three space-separated integers Pi, Si, and Ci, representing the
points of, goals scored by, and goals conceded by team i (0 ≤ Pi ≤ 30000; 0 ≤ Si, Ci ≤ 105).

Output

Output N lines. On the i-th line, output the best final rank of team i, followed by the worst final rank of
team i. Separate the two numbers by one space.

Examples

input

2
1 2
3 100000 0
0 0 100000

input

4
1 3
2 4
4 4 1
2 3 3
4 4 3
0 1 5

input

2
1 2
1 1 0
5 2 7

input

10
2 3
9 10
1 6
7 8
4 5
47 65 12
34 34 20
34 36 24
28 32 22
23 25 25
23 21 28
19 23 34
15 21 32
14 17 39
5 11 49

Note

Sample input 1 is an example of extreme scorelines. Team 2 can still take first place, for example by
winning the final game 262144 − 131072.

Sample input 3 is an example of inconsistent data.

Sample input 4 is from this season's Hong Kong Premier League. (It turns out that the ranking is
unchanged after the final fixture.)

output

1 2
1 2

output

1 3
1 4
1 3
3 4

output

2 2
1 1

output

1 1
2 3
2 3
4 4
5 6
5 6
7 7
8 9
8 9
10 10

Go
Time Limit: 1 second
Memory Limit: 256 MB
Input: standard input
Output: standard output

One day, GFRIEND members went to a Go club to perform their song and learn how to play Go.

To teach them the basic rules of Go, the master gave them N white stones and M black stones. He
then ask them to use the white stones to surround the black stones on the standard 19x19 Go board.
The arrangement must satisfy the followings:

They must use all N white stones and all M black stones.
All black stones must be "captured". In order to capture a group of black stones, it must be
surrounded by white stones in all 4 directions without gaps and spaces.
Though it is not necessary for the black stones to form a single group, all white stones must be
necessary, i.e. removing any one white stone will cause at least one black stone not being
captured.

The above rules can also be expressed by the followings:

The 19x19 board must contain exactly N white stones and exactly M black stones.
Each white stone must be directly adjacent to (4 directions) at least 1 black stone.
Each black stone must be directly adjacent to (4 directions) 4 black or white stones.

Help GFRIEND by writing a program to find out if there is a possible arrangement, and if there is,
output any one.

Input

The input consists of 2 integers N and M .

1 ≤ N ,M ≤ 80.

G

Output

If there is no possible arrangement that satisfies the rules, output Impossible .

Otherwise, output a 19x19 grid that contains any valid arrangement. Use . to represent empty space,
o to represent white stone and x to represent black stone.

Examples

input

20 25

input

21 10

input

5 2

output

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

..........ooooo....

.........oxxxxxo...

.........oxxxxxo...

.........oxxxxxo...

.........oxxxxxo...

.........oxxxxxo...

..........ooooo....

...................

...................

output

...................

...................

...................

...ooo.............

..oxxxo............

...ooxo............

.....o.............

.........o..o......

........oxooxo.....

........oxxxxo.....

.........oooo......

...................

...................

...................

...................

...................

...................

...................

...................

output

Impossible

Handicap
Time Limit: 1 second
Memory Limit: 256 MB
Input: standard input
Output: standard output

In Hackerland, sports programming is the most popular activity. More than half of its residents has a
rating on Hackforces, the official programming competition platform there.

What is so unique about Hackforces is that 1-versus-1 matches are available! Two players can match
online and enjoy a battle of wits anytime. The match can be boring though, if, for example, an absolute
beginner with rating 1 fights a Legendary Grandmaster with rating 109 - everyone knows the outcome
before the match starts.

Therefore, Hackforces has a handicap system, allowing the higher-rated player to play with some
disadvantages, thus making the match more even. There are N types of handicaps, and the i-th one is
equivalent to reducing one's rating by D[i] points. Here are some of them:

Type With One's Nose - Self-explanatory.
You Only Submit Once - Only one submission attempt per task.
Blindfolded - Code while wearing a blindfold.

Seeing that many strong programmers do not voluntarily select a suitable handicap, Hackforces would
like to install an auto-handicap feature. Given the ratings of two players X and Y (X ≤ Y), auto-
handicap should automatically pick an index i between 1 and N (inclusive), such that Y − D[i] > 0 and
|Y − D[i] − X| is minimized. In other words, the new rating Ynew := Y − D[i] of the second player
should be positive and as close to X as possible.

There are three subtle details to keep in mind. First, if playing without handicap yields the smallest
rating difference, then it is preferred to play without handicap. Second, if none of the handicaps can
make Ynew positive, then playing without handicap is the only choice. Third, if two or more different
valid handicaps yield the same rating difference, then the one with the smallest index is preferred.

You are to implement this feature to pick the best handicap for Q matches, according to the rules
above.

Input

The first line of input consists of a single integer N .

The second line of input consists of N space-separated integers D[1], D[2], … , D[N].

The third line of input consists of a single integer Q.

For the next Q lines of input, the i-th line consists of a pair of integers Xi and Yi, the ratings of the two
players in the i-th match. It is guaranteed that Xi ≤ Yi.

For all test cases, 1 ≤ N , Q ≤ 105, 1 ≤ D[1] < D[2] < ⋯ < D[N] < 109, 1 ≤ Xi ≤ Yi ≤ 109.

H

Output

Output N lines, the i-th line corresponding to the i-th match.

If the best choice for the i-th match is to play without handicap, output 0.

Otherwise, output the index corresponding to the chosen handicap.

Example

input

5
2 3 5 10 100
5
1 1
1500 1501
1500 1502
1500 1504
10 65

output

0
0
1
2
4

Infection
Time Limit: 1 second
Memory Limit: 256 MB
Input: standard input
Output: standard output

Byteland is a country consisting of N cities, numbered from 1 to N , and they are connected by M

bidirectional roads. It is possible to reach each city from any other. Each road connects two cities a and
b. Two cities are neighbor if and only if they are directly connected by a road.

Scientists in Byteland found out that there will be an outbreak of Virus B in the coming weeks. The
virus will first appear in one of the N cities, make it into an infected city. Then, on each day the virus
will spread to exactly one uninfected city which is neighbor to an infected city. the The infection
process will end when all N cities become infected.

As Virus B is a fatal and strong virus, they want to make some precautions against Virus B to minimize
the impacts. Luckily, the scientists found out that Virus B has similar DNA structure with another Virus
A, which appeared in Byteland 100 years ago, so the scientists predict that Virus B will infect different
cities in a similar way as Virus A. More precisely, let the order of cities infected by Virus A be
A1, A2, … , AN and the order of cities infected by Virus B be B1, B2, … , BN , the scientists predict that B
will be the lexicographically smallest ordering such that is also lexicographically greater than A.

An ordering P1, P2, … , PN is considered lexicographically smaller than another ordering Q1, Q2, … , QN

, if Pi < Qi, for the first i where Pi and Qi differ.

Given the structure of Byteland and the infection log of Virus A, please help the scientists to predict the
order of cities infected by Virus B or print −1 if such ordering does not exist.

Input

The first line contains two integers N and M , the number of cities and roads in Byteland
(1 ≤ N , M ≤ 105).

The following M line contains two integers ui and vi, describing the ith road connecting city ui and vi
(1 ≤ ui, vi ≤ N).

The last line contains N integers Ai, describing the order of cities infected by Virus A 100 years ago.

It is guaranteed that it is possible to reach each city from any other in Byteland. Also, it is guaranteed
that the given ordering must be a valid infection ordering.

Output

Output N integers in the first line, the predicted infection ordering of Virus B. If such ordering does not
exist, output −1 in the first line.

I

Examples

input

4 4
1 2
1 3
1 4
3 4
3 1 2 4

input

4 3
1 2
2 3
3 4
4 3 2 1

Note

In the first sample, the order of cities infected by Virus A is as follow:

Therefore, the lexicographically smallest infection order for Virus B, which is lexicographically greater
than infection order for Virus A, is 3, 1, 4, 2

output

3 1 4 2

output

-1

Jakanda Forever
Time Limit: 2 seconds
Memory Limit: 256 MB
Input: standard input
Output: standard output

In East Hackerland, there is a country called Jakanda which possesses highly advanced technology. It
consists of N cities and N − 1 bidirectional roads. Each road has its own length and connects two
cities. It is possible to travel from a city to any other city via these roads.

The Black Panda, king of Jakanda, is facing a problem. Some of the cities are having riot. A city under
riot would send out a rebel army and try to capture one other city ("targeted city"). Black Panda is not
going to let it happen. He would send a scout from the targeted city to the city under riot. Both the
rebel and scout will walk for 1 mile toward their own destination during the day and rest at night. The
scout would only spot the rebel army only if they are at the same location and it is at night. If the scout
fails to spot the army, the rebel army would capture its target city.

Other than the riot, the length of some of the roads in Jakanda would change due to damage of the
war.

Now there are Q events in chronological order. Each event is one of the two types:

1 u v , which denote city u is now under riot and is sending a rebel army to capture city v. Note that
city v might have rebellion or captured before, but in these cases we would consider Black Panda had
already suppressed it.

2 i l , which denote the ith road is now changed to length l.

For each type 1 event, output JAKANDA FOREVER if the scout could spot the rebels, output WE NEED
BLACK PANDA otherwise.

Input

The first line contains a single integer N , the number of cities (1 ≤ N ≤ 5 × 105).

The following N − 1 lines contains the roads information, each line contains three integers: ui, vi and li,
which means the ith road connect city ui and vi with length of li miles (1 ≤ ui, vi ≤ N ; ui ≠ vi;
1 ≤ li ≤ 109).

Then a single line is followed, which contains a single integer Q (1 ≤ Q ≤ 5 × 105).

The following Q lines contains the event information, each line contains three integer. The first integer
type denote the event type.

For type = 1, two integers, u v is followed. u is the city under riot and v is the target city (1 ≤ u, v ≤ N ;
u ≠ v).

For type = 2, two integers, i l is followed. It means the ith road's length is changed to l miles.

Output

For each type 1 event, output JAKANDA FOREVER if the scout is going to spot the rebels, WE NEED
BLACK PANDA otherwise.

J

Example

input

4
1 2 3
1 3 4
4 1 5
5
1 1 2
1 2 3
2 1 2
1 2 1
1 4 2

Note

The structure of Jakanda before the third event:

The structure of Jakanda after the third event:

output

WE NEED BLACK PANDA
WE NEED BLACK PANDA
JAKANDA FOREVER
WE NEED BLACK PANDA

Kids' Entertainment
Time Limit: 1 second
Memory Limit: 256 MB
Input: standard input
Output: standard output

What do kids do when they go dine at a Chinese restaurant ("yum cha")? Back when portable game
consoles and smartphones were not available, some kids may opt to play with toothpicks, forming
figures on the dining table.

Hand-written digits contain curly strokes, but by using the seven-segment display, digits can be
represented neatly using only straight segments. The diagram below shows digits 0 to 9 in seven-
segment display:

Alex wants to form a number between 0 and 99 (inclusive), by using toothpicks as segments in the
seven-segment display (one toothpick per segment, naturally). He insists on forming exactly using two
digits, so 0 will be written as 00, 1 will be written as 01, and so on.

Assume the tens digit is X and the ones digit is Y . To use fewer toothpicks, Alex invents a rule for
merging X and Y . First, Alex defines the left part of a digit as the two vertical segments on its left.
Similar for right part. Refer to the following diagram.

If the right part of X and the left part of Y are the same, then the parts can be merged, allowing a
more compact and toothpick-friendly representation. See the following example.

K

There is one exception to this rule. As you may have noticed, if X = 1, then after merging it will look
like one single digit. Therefore, Alex will not merge the two digits if the tens digit X equals 1.

Alex is trying to form T numbers. For each number, determine the number of toothpicks needed to
form the number. Whenever digit-merging is possible, Alex will merge the digits.

Input

The first line of input consists of an integer T , the number of queries.

T lines follow. On the i-th line, there is an integer in the range [0, 99], representing the i-th number that
Alex wants to form. Leading zeroes will be added to integers smaller than 10, so that each line consists
of two digits.

Other than the sample, your program will be judged on exactly one other test case. For that test case,
T = 100.

Output

Output T lines. On the i-th line, output one integer, the number of toothpicks needed to form the i-th
number.

Example

input

8
10
00
24
88
89
75
33
11

output

8
10
8
12
13
8
10
4

Labyrinth
Time Limit: 1 second
Memory Limit: 256 MB
Input: standard input
Output: standard output

Hackerland's Theme Park has an exciting attraction: a labyrinth that can be treated as a 3 × W grid. It
has three special squares: A = (1, a), B = (3, b), and X = (2, 1). Two players will start at A and B
respectively and will try to reach X as quickly as possible. In one step, a person can move one square
up, down, left, or right. It is possible for both of them to be located at the same square at the same
time.

For convenience, let dist(U ,V) denote the distance between squares U and V , i.e. the number of steps
needed to reach V from U . If V is not reachable from U , then dist(U ,V) = ∞.

You are concerned that the game may be unfair, if dist(A,X) ≠ dist(B,X). Therefore, you are going to
place some (possibly zero) obstacles at some of the squares, so that dist(A,X) = dist(B,X) < ∞.

Originally, the grid has no obstacles. You cannot add obstacles to squares A, B, and X. Find a way to
create a fair labyrinth!

Input

The first and only line of input consists of three space-separated integers W , a, and b.

For all test cases, 1 ≤ a, b ≤ W ≤ 100.

Output

If there is no way of adding obstacles so that dist(A,X) = dist(B,X) < ∞, output Impossible .

Otherwise, output Possible followed by three lines. Output W characters on each of the next three
lines. The j-th character of the i-th line should be:

A (ASCII 65), if (i, j) = A;
B (ASCII 66), if (i, j) = B;
X (ASCII 88), if (i, j) = X;
* (ASCII 42), if (i, j) is none of A,B,X and an obstacle is placed at (i, j);
. (ASCII 46), if (i, j) is none of A,B,X and no obstacle is placed at (i, j).

If there are multiple solutions, output any one of them.

L

Examples

input

1 1 1

input

4 3 2

input

3 3 1

input

9 3 7

output

Possible
A
X
B

output

Impossible

output

Impossible

output

Possible
A....
X.**...**
.....*B**

	9cover
	A
	A-blank
	B
	C
	C-blank
	D
	E
	F
	G
	H
	I
	J
	K
	L

