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題解 
 

名稱 作者 編製 難易度 

A  Advanced Preparations 袁樂勤 何翊蓁 ★☆☆☆☆ 

B  Broken Joy-Con 龍瑞希 龍瑞希 ★★☆☆☆ 

C  Copper Mining 黃敏恆 黃卓翹 ★★★☆☆ 

D  Diving Groupmates 鄭希哲 黃梓謙 ★★★★☆ 

E  Express Trains 黃進 黃進 ★★★★☆ 

F  Faster Route 袁樂勤 招朗軒 ★★★★★★ 

G  Greedy Merchants 鄭羽辛 鄭羽辛 ★★★★★ 

H  Hurricane Signal 黃敏恆 黃浩恩 ★★★☆☆ 

I  Interesting PuiLaTiu 鄭羽辛 黃浩恩 ★☆☆☆☆ 

J  Jumping Game 盧沂鋒 黃進 ★★★★★ 

K  Keep Sorting 楊汶璁 楊承羲 ★★★★☆ 

L  Linesweeper 楊汶璁 郭正謙 ★★☆☆☆ 

 

難易度是指作者團隊認為能在比賽中解決該題的隊伍比例 

由 1 星至 6 星為: >75%, 50-75%, 25-50%, 5-25%, 1-5%, <1% 



A - Advanced Preparation 
 
Problem Summary 
 
Classes are suspended based on a rule that if rainfall on day i is >=200 mm, classes on day 
i+1 are suspended. If classes are suspended on day i+1 and its rainfall is also >=200 mm, 
then classes on i+2 are also suspended, and so on. If classes are suspended on a day with 
0 mm rainfall, it counts as a Failed Prediction. 
 
Your Goal is to construct a rainfall schedule for N days with total rainfall exactly S mm, with 
each day’s rainfall is a non-negative integer <= 350 mm, that maximizes the number of 
Failed Prediction. 
 
Solution 
 
To maximize the number of Failed Prediction, we can strategically place a day with >=200 m 
and the next day followed by 0 mm. Structured the schedule in repeating blocks of [200 mm, 
0mm], until the N-th day, or no more rainfalls. If there are rainfalls remaining, distribute it 
across the days with 200 mm without exceeding 350 mm per day. If there is still rainfall 
leftover, distribute it across the days with 0 mm without exceeding 350 mm. This guarantees 
the maximum number of Failed Prediction. 
 
Comments 
 
The number of teams solved was quite aligned to my expectations. I predicted around 46 
teams out of 62 teams (~75%), and the actual result is 50 teams (~80%). However, I thought 
the solving time would be faster. 



B - Broken Joy-con 
The grid dimensions  can be up to 10^9, which makes it impossible to simulate the 
movement cell by cell or to store the grid in memory. 
 
The key insight is that the player only changes its state (location or direction) at a few 
specific Points of Interest (POIs): 

1.​ The starting cell, (1, 1) 
2.​ The 2K portal cells 
3.​ The finishing cell, (R, C) 

The vast empty space between these points is irrelevant. The journey is just a sequence of 
straight-line movements between these POIs. 
 
To create a sorted list of POIs, we can insert the starting cell to the head of the portal list and 
the finishing cell to the tail. The player then starts at the first position in this list. 
 
Here lists the conditions of failing (cannot reach the finishing cell): 

1.​ Hits a wall 
2.​ Enters a portal that was visited before (visited as an entrance) 

 
To check whether the Ben can reach the finishing cell, follow this steps: 

1.​ Check to see if Ben can reach the next portal. Assuming Ben is at the i-th cell in the 
list, he can reach the next portal if and only if the (i+1)-th cell shares the same row 
index with the i-th cell. Jump to (3) if he can, jump to (2) if he cannot. 

2.​ There are two cases, in either case, the answer can be determined directly. 
a.​ Ben hits the wall (fail condition 1): The finishing cell doesn’t share the same 

row index with the i-th cell, or the finishing cell shares the same row index 
with the i-th cell but has a smaller column index. 

b.​ Ben reaches the finishing cell: The finishing cell shares the same row index 
with the i-th cell and has a larger column index. 

3.​ Ben has no choice but to move into the next portal and teleport to the corresponding 
position. Go back to (1) after updating the current position. 

 
Note that it is impossible for Ben to enter a loop. So the solution can always be found within 
2K+1 steps. 

 



Proof of no loop 
For a portal pair ((x1, y1), (x2, y2)). 
It is actually building an edge in between (x1, y1) and (x2, y2 + 1) and an edge in between 
(x1, y1 + 1) and (x2, y2). 

 
Then notice that there is at most 1 in-degree and 1 out-degree for each cell, so it is 
impossible to reach an entrance visited before. 
(Figure cr: firewater) 



C - Copper Mining 

In this task, you are given a N * N grid with exactly 3 copper cells (‘X’) and the 

remaining are stone cells (‘.’). The goal is to mine the minimum number of stone cells 

to connect all 3 copper cells with copper cells and mined cells (‘*’). 

Solution 

Define the median cell as the cell at the X and Y coordinate median of copper cells. 

E.g. if copper cells are at (3, 2), (2, 4), and (4, 5), the median cell is at (3, 4). Observe 

that the optimal solution is to connect all 3 copper cells to the median cell separately 

in the respective shortest paths. One of the easiest ways to connect 2 cells in the 

shortest path would be mining out a ‘L’ shape. 

Comments 

It is expected to have about 25 teams to be able to solve this task during contest time. 
 

The solution requires some simple observation. 

 

 



D - Diving groupmates 
 
First, let's consider a simplified version of the problem, where each groupmate must 
be the PIC of exactly one task. We can see that for every task i, it is handled if and 
only if there exists a task j such that the reminder for task i is sent earlier than task j 
and the PIC of task i is a peanuter of task j. 
 
We can build a directed graph of M nodes, where each node represents a task. For 
every pair of nodes, we build an edge from node i to node j if the PIC of task j is a 
peanuter of task i, which means that sending the reminder for task i would cause 
task j to be handled if the reminder for task j has already been sent. We can see that 
for each connected component in the graph, the last reminded task can never be 
handled. 
 
For each of the connected components, we can divide the graph into multiple SCCs 
forming a tree, using an algorithm like Tarjan or Kosaraju. We can then start a BFS 
(or DFS) from any node in the root SCC, which every non-root node must be visited 
after visiting a node that has an edge pointing to it. We can then send reminders for 
the tasks in the reverse order that we visited the nodes, so that every task except the 
last one will be handled, which must be an optimal order. We can get the answer to 
the whole problem by combining the answers of each connected component. 
 
Now, let's go back to the original problem, where each groupmate can be the PIC of 
multiple tasks. We can build a directed graph of N + M nodes, where each of the M 
nodes represents a task and each of the N nodes represents a groupmate. For every 
pair of groupmate node i and task node j, we build an edge from node i to node j if 
the groupmate i is the PIC of task j, which means that if groupmate i upwaters, they 
will handle task j if the reminder for task j has already been sent. We also build an 
edge from node j to node i if the groupmate i is a peanuter of task j, which means 
that sending the reminder of task j would cause groupmate i to upwater. We can then 
solve the problem in a similar way that we used to solve the simplified version, start 
a BFS from the root SCC, visit all nodes in the same SCC, then visit the next SCC 
that has an edge pointing to it. Please note that we should skip the groupmate nodes 
when outputting the answer. 
 
Comments 
 
The author expected this task to be solved by 3-5 teams, but only 1 team had solved 
it during contest time. It may require some time to think about how to build the graph, 
but the solution is quite straightforward after the graph is built. 



E - Express Trains

Problem Summary

Given a linear train system with N stations and M type of trains, where trains of type j stop
at stations i where station level Ai ≤ j in order. All trains take 1 minute to travel between
consecutive stops.
For Q pairs of travel plans (Ui, Vi), find the minimum travel time from Ui to Vi.

Solution

First, let x be any station such that Ui ≤ x ≤ Vi and Ax = min(AUi
, AUi+1, . . . , AVi

). Observe that
we must stop at the station x.

Then, we can travel using a two-step greedy method.

• From station Ui to station x, we will greedily change to a train of the smallest possible type
in every station we stop at. Notice that we will not skip station x.

• From station x to station Vi, we can consider the problem in reverse, traveling from station
Vi to station x, also changing to a train of the smallest possible type in every station we stop
at.

Directly implementing this greedy method leads to a O(NQ) solution.

To optimize it, for every station i we can precompute the first station on both sides of it j such
that Aj ≤ Ai. If they exist, name them li and ri, respectively. We can show that we can go from
station i to station li or station ri in 1 minute.
To implement this, we can use a monotone stack or any range query data structure and binary
search.

For the first step, when we are at station i, we always “jump” to station ri in 1 minute as our next
station, and station ri always exists. Therefore, the time taken in the first step is the number of
“jumps” needed from station Ui to station x using ri.
Similarly, the time taken in the second step is the number of “jumps” needed from station Vi to
station x using li.

However, the solution still has a time complexity of O(NQ). To further speed up the solution, we
can use binary lifting to find the number of “jumps” needed in O(logN).
Alternatively, we can consider a graph of N nodes with (i, ri) as edges. Note that it is a rooted
forest where all parent nodes are greater than their child nodes. Node x will be an ancestor of
node Ui and the number of “jumps” needed is the difference in depth of two nodes. The time
complexity of each query is O(1) using this method.

The time complexity of the full solution is O(N logN + Q logN) or O(N logN + Q) for the
alternative solution.



Comments

The author expected this task to be solved by around 10 teams. However, the overall performance
is slightly worse than our expectations. Contestants should familiarize themselves with more
“standard” tricks, such as greedy approach, reversing the problem and binary lifting.



F - Faster Route 
 
The setting of this task is a 1 × C rectangle: starting from lower-left corner,  
 

●​ Alice would pass the pedestrian crossing 1 taking 1 unit time, and then walk 
right taking C unit time; 

●​ Bob would walk right taking C unit time, and then pass the pedestrian crossing 
2 taking 1 unit time. 

●​ Each pedestrian crossing has a traffic light, with periods of A and B unit times 
respectively, such that the lights turn red during odd periods and turn green 
during even periods.  Both lights just turned from green to red at time 0. 

●​ A person can immediately cross the road if he/she arrives at the crossing with 
the light being green, otherwise he/she must wait till the light turns green. 

 
Your task is to determine the number of pairs (u, v), where 0 ≤ u ≤ U and 0 ≤ v ≤ V, 
such that if Alice starts the journey at time u and Bob at time v, the person starting 
strictly later will arrive strictly sooner. 
 
Let arriveA(u) and arriveB(v) be their arrival times respectively, and let S be the set of 
pairs that satisfy the task requirement.  Further define S = SA ∪ SB, where SA refers to 
the set of pairs which Alice departs first and SB is which Bob departs first.  Then 
 

(u, v) ∈ SA     ⇔     u < v < arriveB(v) < arriveA(u) 
(u, v) ∈ SB     ⇔     v < u < arriveA(u) < arriveB(v) 

 
First some simple observations: 
 

●​ The overall scenario repeats itself after 2 × LCM(A, B) unit time.  For ease of 
discussion we shall compute the results for which 0 ≤ min(u, v) < 2AB. 

●​ The waiting time for Alice at the crossing is at most A, purely determined by 
mod(u, 2A).  Similarly, the waiting time for Bob at the crossing is at most B, 
purely determined by mod(v + C, 2B). 

●​ arriveA and arriveB are non-decreasing functions. 
 
In the following discussion we shall consider the case that Alice starts earlier and 
arrives later, i.e. compute the values for SA.  The computation for SB, in which Bob 
starts earlier and arrives later, is analogous with a shift of C in starting time.  Based 
on the above observations we can draft an O(AB × log max(A, B)) solution as follows: 
 

●​ For each 0 ≤ u < 2AB for Alice, arriveA(u) is fixed. 
●​ Since arriveB is non-decreasing, there is a maximum v* such that arriveB(v*) ≤ 

arriveA(u) – 1.  It is possible v* ≤ u, or v* ≥ 2AB, or even v* < 0. 



●​ For all u < y ≤ v*, we have arriveB(y) ≤ arriveB(v*) < arriveA(u), so (u, y) ∈ SA. 
●​ The number of desired pairs is therefore max(v* – u, 0) for each u. 
●​ We can use binary search to find v* for each u, hence O(AB × log max(A, B)). 

 
Observation 4:  If both Alice and Bob get to their respective crossings at a green 
light, their waiting times are both 0, and so both their travel times are exactly C + 1, 
the one starting earlier must arrive sooner, thus not meeting our requirements.  In 
other words, the only time difference between the routes is waiting time at traffic 
lights, and the one starting earlier arriving later must have waited at his/her 
crossing (for at least 2 unit time). 
 
But that would only eliminate half of the u‘s during computation.  Alice still needs to 
wait when u = 2kA + r, with 0 ≤ k < B and 0 ≤ r < A (k here actually indicates which red 
light (0-based) of Crossing 1 that Alice is waiting at), and finding v* for each u is still 
required.  Luckily, 
 
Observation 5: For the above u = 2kA + r, we have arriveA(u) = (2k + 1)A + 1 + C, 
which is independent of r.  In plain words, whenever Alice needs to wait for the k-th 
red light at Crossing 1, she will cross the road at the moment the light turns green, 
resulting in the same arrival time regardless of her starting time. 
 
Thus there is only B distinct values of arriveA(u), and so B distinct values of v* 
amongst the u’s we are interested in.  We can therefore handle the computation by 
each red light:  
 

●​ For each 0 ≤ k < B for Alice, let u* = 2kA, corresponding to the beginning of the 
k-th red light.  We can use binary search to find v* for each u*. 

●​ If v* ≤ u* we move on to the next red light. 
●​ Otherwise (u*, v*) ∈ SA and (u*, v* + 1) ∉ SA.  It can be easily shown that v* < 

(u* + A – 2) since A is Alice’s maximum waiting time.  It is possible v* ≥ 2AB. 
●​ Then for all u* ≤ x < y ≤ v*, we have  

 
arriveB(y) ≤ arriveB(v*) < arriveA(u*) = arriveA(x) 

 
so (x, y) ∈ SA, and boundary (x, v*) ∈ SA, (x, v* + 1) ∉ SA. 

●​ The number of desired pairs is therefore (v* – u*) + … + 1 = . (𝑣*−𝑢*)(𝑣*−𝑢*+1)
2

●​ Time complexity = O(A log B + B log A), including SA and SB altogether. 
 
It is important to be aware that v* can be ≥ 2AB when u* is very close to 2AB.  
Therefore, to better handle the boundary parts of U and V, to avoid affecting our 
“complete blocks”, it would be implementation-wise easier to separate out the last 
4AB instead.  Also because of U and V, some of the triangular formulae for our last 
4AB may have to be “clipped” into a “trapezoid”, especially for SB with a shift of C. 



 
Comments: 
 
This problem is rated the most difficult task in this year’s problemset; at the end no 
team managed to solve it during contest time, and only 1 team made a submission 
attempt.  Even for the unofficial team, they solved 11 out of 12 tasks, and the only 
task they missed is this Problem F. 
 
The background setting of red-light-green-light should be easy to understand, as a 
common yet crucial part in our everyday lives.  The difficulty of this problem, being 
an ad-hoc math-ish task with no advanced algorithms required, comes not only from 
the complexity of incorporating boundary case handling into our formulas (the large 
values of C, U, V can be intimidating), but also that some of the observations may 
appear too trivial to be taken into serious consideration to make further progress. 
 
As a final note, the constraints of this task is set such that the above solution can 
comfortably pass, yet in fact v* for each u* can be computed in constant time, 
yielding O(A + B) full solution; the detailed formula is left as an exercise to the 
readers.  Hint: Prove that Bob’s waiting time correspond to v* must be 0. 



G – Greedy Merchants 
Define        as the minimum number of trades required for merchant   to obtain item  . 

Specially,            if it is impossible for merchant   to obtain item  . 

Since the problem can be modeled as a shortest path problem on an undirected graph, we 

have                

Hence, we can ensure that       by swapping   and   if it does not satisfy the inequality. 

 

Let   be the item that merchant   currently owns. Let   be any item with the maximum 

value that can be traded with item  . 

If at any point where    , and   does not exist or      , then the answer is impossible, 

since we can no longer find a way to trade for items with value greater than or equal to   . 

Otherwise, there are two cases to be handled. 

 

Case 1:      . 

Observation: In this case, it is always optimal to trade item   for item  . 

Proof: Assume there is a sequence of trades               , where 

          and    
        for all      . We have     

       . Note that 

          and          . From (2) and (3), we have      . From (1), (4) and (5), we 

have      . Hence, the sequence of trades can always be optimized to      . 

Hence, we can greedily trade item   for item   as long as      . The number of trades 

required for this part can be quickly calculated by pre-computing   for every   and do 

binary lifting for each query in        . 

 

Case 2:      . 

In this case, it may not be optimal to trade item   for item  . However, the following 

observation enables us to reduce the problem to simple case handling. 

Observation: If          , then         . 

Proof: If          , then there exists an item   where           and          . 

Note that           and          . From (2) and since      , we have    

      . We will then handle the following two cases separately. 



       

If          , it is trivial to prove that this can only be achieved through    . 

If          , then it is always possible to trade from item   to item  , and from item   

to item  . We assume there is a valid sequence of trades      , where 

         . We have           . From (6) and (7), we know that      . From (4) 

and since      , we have      . Hence, it is possible to trade from   to  . Thus, 

      is always achievable given that         . 

Otherwise,        must be equal to 3. From (4) and since      , we have      , and 

hence          . By (5) and (8), we know that item   can be traded for item  . 

Hence, it is always possible to trade from item   to item   within 3 trades      

    . 

 

       

If          , it is trivial to prove that this can only be achieved through    . 

Otherwise,        must be equal to 2. From (1), we have          . From (4) and 

since      , we have           . By (9) and (10), we know that we can trade item 

  for item  . Hence, it is always possible to trade from item   to item   within 2 trades 

       . 

So,         . 

With this observation, it is enough by checking if it is possible for the merchant to trade 

from item   to item   through the following three ways: 

1.     in one trade. 

2.       in two trades. 

3.         in three trades. 

 

For every item  , its respective   and   can be found by storing the item with the maximum 

value while running a sweep line algorithm. Combine the above solutions for the two cases 

to obtain the full solution. 

 

Comments 
This problem requires a deep understanding of advanced topics, such as sweep line 

algorithm and binary lifting, along with several critical observations that may be 

challenging for contestants to observe. Hence, it is expected that only a small number of 

teams (approximately 1-3) is able to solve this problem during the contest. 



Eventually, only the unofficial team managed to solve the problem, with a different 

approach than the intended solution. Their method took advantage of the fact that for all 

items  , if there exists an item   such that       and      , then it is always suboptimal to 

use item   as an intermediate item instead of item  . By eliminating all such items  , one can 

obtain a sorted list of items where every item   in the list satisfy         and        . 

Then for every item  , the possible intermediate items can be represented by a range in this 

sorted list. If any item in the range can swap with item  , we know that we can trade from   

to   within 2 steps. Otherwise, it is always optimal to trade   with the item with the 

maximum value in the range. This can be done by binary lifting too. 

There are many other alternative solutions. Hence, contestants are encouraged to explore 

different approaches when tackling a problem during the contest, as some may lead to 

unexpected breakthroughs and ultimately to the full solution. 



H - Hurricane Signal

Problem Summary

You are given two points H,C on a Cartesian coordinate plane. Let A be the angle formed by the
two tangents of a circle with center H and radius 1 that pass through C.
You are also given two parameters D,U which defines another angle B. The two lines that form
B are D − U degrees and D + U degrees relative to the positive x-axis, counterclockwise.
Your task is to find the percentage of B that intersects with A.

Solution

To simplify the problem, we first translate the graph so that C is the origin.
The two tangents are α1 = tan−1(Hy

Hx
)− sin−1( 1√

Hy
2+Hx

2
) and α2 = tan−1(Hx

Hy
) + sin−1( 1√

Hx
2+Hy

2
)

degrees relative to the positive x-axis counterclockwise, respectively.

We then rotate the graph such that the predicted trajectory is along the negative x-axis,
i.e. rotating the graph by 180−D degrees counterclockwise.
Now α′

1 = tan−1(Hy

Hx
)−sin−1( 1√

Hy
2+Hx

2
)+180−D and α′

2 = tan−1(Hx

Hy
)+sin−1( 1√

Hx
2+Hy

2
)+180−D

Since the overlapping region must be between 90◦ and 270◦, we can take modulo with respect to
360 for all relevant values.
If α′

1 ≥ 180+U or α′
2 ≤ 180−U , the answer is 0; otherwise, the answer is

min(180+U,α′
2)−max(180−U,α′

1)

2U
.

Alternative Solution

Again, we first translate the graph so that C is the origin.
Since the maximum allowable error is 10−6, it is not necessary to use an exact algorithm to com-
pute the required probability. In fact, this task can be solved by scanning through the range D−U
to D + U in very small steps to estimate the probability.

We have to be able to tell whether the cyclone, if it travels along a particular angle θ, would

enter the circle of 1-unit radius. We know that the length of the tangent is l =
√

Hx
2 +Hy

2 − 1.

Therefore we can simply check whether this point (px, py) = (l cos θ, l sin θ) is inside the circle or
not. i.e.

√
(Hx − px)2 + (Hy − py)2 ≤ 1.

Then, we exhaust θ = D + 2i+1
106

U where i = −5 × 105, . . . , 5 × 105 − 1 (1 million values). For
each θ that the cyclone would enter the circle, we add 10−6 to the answer. The maximum error is
10−6.



Comments

The author expected 15 to 30 teams can solve this task during contest time. However, the onsite
performance is slightly worse, with only 5 teams able to solve it within the contest.
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I - Interesting PuiLaTiu

Problem Summary

Given two integers 2021 ≤ L ≤ R ≤ 109, find the number of integers L ≤ k ≤ R such that k and
k − 2016 are both perfect squares.

Solution

For any such k, denote k = a2 and k − 2016 = b2 for some integers a > b ≥ 0.

We have a2 − b2 = 2016
and factorizing it gives (a+ b)(a− b) = 2016

As a, b are both integers, we can factorize 2016 to find the possible values of a + b and a − b.
This can be done by (almost) all factorization methods.

We then solve for a, b for each pair of factors, and check if a > b > 0 are integers.
To answer the question, simply count the number of a such that L ≤ a2 ≤ R.

Alternative Solution

Alternatively, observe the following:

• a+ b = 2016 and a− b = 1 has a = 1008.5 and b = 1007.5,
which should be rejected as a, b are not integers

• a+ b = 1008 and a− b = 2 has a = 505 and b = 503

• . . .

Hence, the maximum integral value of a is when a = 505, and the maximum value of k is
5052 = 255025. Iterate from L to min(255025, R) and count the number of k that satisfy the
constraints.

Comments

The author expected almost all teams can solve this task during contest time.
The onsite performance was as expected, with 55 teams solving the task within the contest.
Contestants should be aware of the time complexity of their solutions, as the naive implementation
will net a Time Limit Exceeded (TLE) verdict due to the large constraints on L and R



J - Jumping Game  
Problem summary  

There is a starting platform and  jumping platforms on a line. The width of the -th platform is 
. The distance between the -th platform and the -th platform is . 

Starting from the starting platform, you will jump  times. In the -th jump, you can jump over 
 blocks to the -th platform. When you jump to the middle of a platform, you earn a point.

You should find the highest point you can earn when you finish the  jumps, or report that it's 
impossible to finish the  jumps.

Solution  

Let  be the highest point when jumping to block  without adding the point in this jump,  be a 
block on the last platform,  .

Jumping from  to , the point you can earn is , so  is the maximum value of  
among all the valid block , which means .

Observation 1  

For two blocks on a platform  and , we have .

Proof  

Since , we have . So  is a subset of  and 
.

Since  is non-increasing, we can maintain the range for each value of  on each 
platform(number of ranges on a platform  maximum value of ).  

Let  be the range such that .

According to the above transition formula, for , 
, so the jump will only shift all the range by  units without 

changing their size. You can just maintain the offset and cut the ranges lying outside the 
platform.

For the middle of platform , you can use binary search to find the range  such that 
. Since you will earn a point on block ,  will 

increase by one. Hence, -th range  will become , -th 
range  will become . 

So in each jump, the transition can be done in .

Eventually, the value of the last range will be the answer.

Time complexity 

af://n0
af://n2
af://n6
af://n9
af://n11


Comments  

The author expected this task to be solved by at least 5 teams. However, the overall performance 
is slightly worse than our expectations. Contestants are encouraged to apply different DP 
optimization techniques, such as processing entire layers in 2D DP in this task, which can 
significantly reduce time complexity.

af://n25


K – Keep Sorting

Problem Summary

Given a permutation of 1, 2, . . . , 3N , where you can sort a contiguous subarray of length ≤ 2N in one
operation. Find the shortest sequence of operations to sort the entire permutation.

Solution

Observe that there is no reason to sort a subarray shorter than 2N elements – it’s always not worse to
sort more elements in a single operation (so the resulting array is more “sorted”). Having this in mind,
it would be reasonable to guess that the answer is bounded by a small constant. We can try enumerating
the possibilities one by one:

• Case #1: Answer is 0. Obviously, this could only happen when the permutation is already sorted.

• Case #2: Answer is 1. With one operation, we can only relocate a contiguous subarray of 2N
elements and the other locations remain unchanged. This inspires us to look out for the first and
last misplaced element, and sort the subarray between them. If they are less than 2N elements
apart, then the whole array can be sorted after the operation. Otherwise, either one of them will
still be mispositioned after any one operation.

• Case #3: Answer is 2. From the observation in Case #2, we already know that the array has an
unsorted segment of length > 2N . Since we only have 2 operations, the 2 operations must involve
the leftmost and rightmost misplaced element, respectively. Let’s denote them as l and r. Since it’s
always no worse to sort a subarray of 2N elements, the two operations would involve the subarrays
[l, l+2N) and (r− 2N, r] respectively. It suffices to test whether these two operations would work.
Don’t forget to try applying them in the other order as well!

• Case #4: Answer is 3. In fact, it is always possible to sort any permutation using 3 operations.
The 3 operations are: [1, 2N ], [N +1, 3N ], [1, 2N ], effectively “dividing” the array into three parts,
[1, N ], [N + 1, 2N ], [2N + 1, 3N ], and sorting two parts at a time.

– Consider the elements 1, 2, . . . , N . If the element is originally within the subarray [1, 2N ],
then it will be moved to [1, N ] after the first operation and stay there forever. Otherwise, if
it is originally within the subarray [2N + 1, 3N ], then it will be moved to [N + 1, 2N ] after
the second operation and moved to [1, N ] after the third operation. Therefore, it ends up at
the correct part.

– Consider the elements 2N+1, 2N+2, . . . , 3N . If the element is originally within the subarray
[N+1, 3N ], then it will stay in [N+1, 3N ] after the first operation and moved to [2N+1, 3N ]
after the second operation. Otherwise, if it is originally within the subarray [1, N ], then it
will be moved to [N + 1, 2N ] after the first operation and moved to [2N + 1, 3N ] after the
second operation. The third operation does not affect the element and hence, it ends up at
the correct part.

– We can deduce from here that N + 1, . . . , 2N must be placed in the correct part as well.

Due to the second and third operation, the order of the elements within each part should also be
sorted. Therefore, these 3 operations always sort the array correctly.

Side Note: This is actually the core idea of a sorting algorithm called Stooge Sort, which divides
the array into three thirds and sorts 2/3 of the array recursively. Unfortunately, it is ridiculously
slow, with a O(n2.7095...) time complexity. One can view Stooge sort as bubble sort but with a
batch size of N/3. Interestingly, the optimal batch size is simply 1 – any larger batch size would
make it slower than bubble sort.

Comments

The author expected around 10 teams to solve this problem, and the performance is slightly better
than expected. As “machine time” is a valuable resource in ICPC contests, teams are encouraged to
try making more observations before coding – some observations would help reducing the coding time
significantly despite not being essential!

https://en.wikipedia.org/wiki/Stooge_sort


L – Linesweeper

Problem Summary

You are given a minesweeper game in progress in a single row with N cells. Find the number of unopened
cells that are guaranteed not to contain mines.

Solution

There are only 3 types of available hints, 0, 1 and 2. We can try to deduce as much as possible using
the hints we have.

The hints 0 and 2 are straightforward – if we see a 0, we can mark both neighbouring cells as safe. If we
see a 2, we can mark both neighbouring cells as containing mines.

Next, we can work on the hints with 1. Here are things that we can possibly deduce:

• If the cell only has one neighbour (i.e. the cell is on the left or right border), then the only neighbour
must contain a mine.

• If the cell has two neighbours,

– If one of the neighbours is known to be safe, the other neighbour must contain a mine.

– If one of the neighbours is known to contain a mine, the other neighbour must be safe.

However, the deduction might come in an arbitrary order. Consider the following two examples:

• 1?1?1?1?1?1?

• ?1?1?1?1?1?1

The first input should be deduced from left to right, as 1 is at the left border. However, the second input
should be deduced from right to left, as 1 is at the right border. It is also possible that deduction has to
be done with a mix of both orders, e.g. for the input 1?1?????1?1. To solve this issue, we should try
doing this deduction in both directions (from left to right, and from right to left).

One can show that there are no more deductions possible other than what we have already done, i.e. the
remaining cells can either contain or not contain a mine.

Comments

The author expected this task to be solved by at least half of the teams. The overall performance is
close to our expectations. However, many teams made numerous penalty attempts in this task. Teams
are reminded to consider corner cases more carefully, such as handling the 1-st and N -th cells, and to
deduce the answer from both left to right and right to left.
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